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Body forces and surface forces

Consider a body suspended in a liquid
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Representation of surface forces by stress tensor
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Normal force component: SE.
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Tangential force component:
grad|v| j’ Total surface force:
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Why the stress ITis a tensor?

Surface force depends upon the direction of the normal to the surface
across which it acts. Let's analyze this dependence:
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[ The net surface force exerted on the tetrahedron:
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Why is the stress IT is a tensor? (cont’d)
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Thus, IT meets the transformation properties for a 2-nd rank tensor.

Basic equations of fluid mechanics

Continuity constraint:
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Euler equation:
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the Newton equation

applied to a fixed mass
of fluid
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dynamics of inviscid fluids
(no dissipation of energy)




Liquid in the field of gravity
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An alternative form of the Euler equation
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rot or curl operation
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Boundary condition:

o RHS is zero because
liquid can’t go through the wall Vx(Vp) =0.
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Stationary flow: Bernoulli's equation

zero because
velocity doesn't
change with time

ov 1
E+(v-V)v:—;Vp
FV(v-v) =[vX[VxV]]+(v-V)v

V($pv*+p)= [vx[VxV]

perpendicular to flow
lines
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principle of water
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Along the flow lines:

Momentum flux density
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Implicit summation!
(Einstein’s convention)

Dynamics of a viscous fluid: Navier-Stokes equation
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For a viscous fluid there is an additional "viscous" term in IT and o,
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The corresponding dynamic equation (Navier-Stokes) is
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Applications of Navier-Stokes equation
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Capillary rise: Familiar and Unfamiliar

displaced

\ ar f stress Hydrostatic equilibrium:
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The dynamics of capillary rise
Full dynamic equation (Newton’s law):
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time-derivative of momentum  capillary force viscousdrag  gravity force
(Poiseuile flow)

Lucas-Washburn approximation (quasi-steady rise, low Re):
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Capillary rise dynamics in real systems

Hexane, 0.2 mm capillary Diethyl ether, 1 mm capillary
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Inertia effects are important,
LW equation fails completely

Quasi-steady rise,
LW equation works fine

Obvious shortcomings of the above treatment

« Shape of the meniscus is assumed to be fixed
« Infinite acceleration at zero time (touch-point)
« Infinite stress on the three phase contact line

More recent theoretical developments

Szekely (1971), Levine (1976) — remedied the “infinite acceleration”
fault by revising the energy balance.

van Dyke (1964), van Dussan (1976), Levine (1979) — remedied the
“infinite stress” fault by allowing for the boundary layer slippage.

Capillary rise dynamics revisited
(after Levine et al, JCIS, 73 (1980) 136)

concave
meniscus
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meniscus
there should be
a non-zero
radial velocity
component

parabolic profile z
(Poiseuille flow)
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Navier-Stokes equation for capillary flow
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Boundary conditions

a slipping boundary W=v+u
layer is allowed for { wa
near the meniscus

no-slip b.c. holds
for a larger part
o7 of the capillary




Remaining limitations

* Only the quasi-steady rise regime is analyzed

« Meniscus dynamics is neglected

« Entry-point effects are neglected

« Conditions for no-slip to slippage transition and transition zone
effects are unknown

infinite curvature
of the liquid surface near tpl favours
X precursor film spreading

air
liquid

solid

Note: Precursor films spreading is driven by a difference in the chemical
potential of liquid molecules (i.e. a non-hydrodynamic force)




