

Force type / origin	Action range	Influenced by
Hydrodynamic shear	$L \sim (\eta t/\rho)^{1/2}$	Headbox hydrodynamics Machine speed; Stock viscosity
Polymer-induced	<i>L</i> ~ 10 nm	Polymer type and M _w ; ion strength of the stock
Electrostatic	$L \sim 0.3 / I^{1/2}$ nm (I - ion strength)	lon strength of the stock water; pH; type of pulp; amount of ionic additives
van der Waals	<i>L</i> ~ 1 nm	-
Hydration (hydrophobic)	<i>L</i> ~ 1 nm	Hydrophobe/hydrophile balance; surface energy
I.B. Role of surface e Surfac Volum	ffects is proportional $\frac{e}{e} \propto \frac{\pi dL}{\pi d^2 L} \propto \frac{1}{d}$	to the surface to bulk ratio, $\rightarrow \infty$ as $d \rightarrow 0$

	Examples of Retention Systems		
Poly(h	ydroxy styrene) / polyethylene oxide system for retaining fine particles		
(00 p	M of PHS ~ 1 000 - 2 000		
	M. of PEO ~ 4.000.000 - 7.000.000		
	Weight ratio PHS / PEO ~ 0.5 to 10		
	Addition level ~ 0.01 to 0.1% by the weight of dry pulp.		
Cation	c galactomannan / bentonite system for retaining mineral fillers		
Cation such a (US pa	c galactomannan / bentonite system for retaining mineral fillers s clay, chalk, calcium carbonate, titanium oxide, or bentonite t. 6,270,626)		
Cation such a (US pa	c galactomannan / bentonite system for retaining mineral fillers s clay, chalk, calcium carbonate, titanium oxide, or bentonite t. 6,270,626) Degree of cationic substitution ~ 0.01 to 1%; M _w ~ 2,000,000		
Cation such a (US pa	c galactomannan / bentonite system for retaining mineral fillers s clay, chalk, calcium carbonate, titanium oxide, or bentonite t. 6,270,626) Degree of cationic substitution ~ 0.01 to 1%; M _w ~ 2,000,000 Bentonite/galactomannan ratio ~ 1 to 10 by weight		
Cation such a (US pa	c galactomannan / bentonite system for retaining mineral fillers s clay, chalk, calcium carbonate, titanium oxide, or bentonite t. 6,270,626) Degree of cationic substitution ~ 0.01 to 1%; M _w ~ 2,000,000 Bentonite/galactomannan ratio ~ 1 to 10 by weight Addition level ~ 0.01 to 5% by the weight of dry pulp.		
Cation such a (US pa <i>Note</i> : ca (polyhyd	c galactomannan / bentonite system for retaining mineral fillers s clay, chalk, calcium carbonate, titanium oxide, or bentonite t. 6,270,626) Degree of cationic substitution ~ 0.01 to 1%; M _w ~ 2,000,000 Bentonite/galactomannan ratio ~ 1 to 10 by weight Addition level ~ 0.01 to 5% by the weight of dry pulp. ionic substitution may be done by reacting hydroxyl groups of the parent polyn oxystyrene, polygalactomannan, starch) with quaternary ammonium compoun		

