

Method	AES	XPS (ESCA)	SIMS	RBS (IBA)	EDX (EDS)	GDOES (GDAES)
Detected elements	>Li	>He	>H	>C	>Na	>H
Detection limit, at.%	0.1	1	0.0001	0.01 to 1 (depend on Z)	0.1	0.0001
Max. depth (resolution), nm	0.3-3 (no)	1-3 (with sputter)	1000 (1)	1000 (10)	1000 (no)	100000 (10)
Lateral resolution, um	0.1	10	0.1	1000	0.1	no
Chemical structure	no	yes, limited	yes	no	no	no
Organic analysis	no	yes	yes	no	no/yes (elemental)	no/yes (elemental)

Method	Full Name	Based on	Application Notes	
DRIFT	Diffuse Reflectance Infrared Fourier Transform	Diffuse reflectance from powders	Used in catalyst and adsorbent research; monolayer sensitivity for disperse systems with high specific surface areas.	
ER FT-IR	External Reflectance	Specular reflectance from metal surface	0.1 to 10 um organic films on metals.	
ATR / MIR FT-IR	Attenuated Total / Multiple Internal Reflectance	Multiple reflectance and multiple light passes through adsorbate film	Penetration depth (signal averaging) is still around 1 um; but both methods achieve monolayer sensitivi on flat surfaces.	
IRRAS RAIRS	Infra-Red Reflection Absorption	Different absorption of s- and p- polarized light	Monolayer sensitivity on flat metal surfaces	
VSFS	Vibrational Sum Frequency Spectroscopy	Nonlinear polarization and sum frequency generation	Truly surface-specific. By symmetry rules, only surface molecules can give SF signal. Distinguish surface groups from bulk groups.	
SERS	Surface Enhanced Raman Spectroscopy	Enhanced inelastic scattering by adsorbed molecules due to surface plasmons	Molecules adsorbed on special (molecularly rough) metal substrates (Ag, Au, Cu).	
Providence of a		P beam		

A Little Understanding Is Better Than a Lot of Misunderstanding (Part II)

After exposing a copper substrate to dodecylmercaptan solution, student X suspecting that there might be some interaction between Cu and sulphur, carried out ESCA and EDX, but got apparently conflicting results:

- ESCA: Cu: 20 at%; C: 65 at.%; S: 5 at%; O: 10%;

- EDX: Cu: 80%; O: 19%; C and S < 1%.

What is the reason? What would happen if ESCA sample were sputtered with Ar^{\star} ions?

Further, he/she decided to determine *molecular composition* of sulphur-containing layer by using:

ToF-SIMS
IRRAS
OCM

Is it an appropriate choice of techniques?

Some Useful References

Electron, ion, and vibrational spectroscopy of surfaces: Woodruft, D.P., Delchar, T.A., Modern Techniques of Surface Science, Cambridge Univ. Press, 1986. Photoelectron and Jager Spectroscopy, Plenum, New York, 1975. Electron and Ion Spectroscopy of Solids, Fiermans, L. Vernik, J., Dekeyser, W. (Eds.) Plenum, 1978. Methods of Surface Analysis, A.W. Czandema, Ed., Elsevier, 1975.

Azzam, R.M.A., Ellipsometry and Polarized Light, North-Holland, 1977. Handbook of Ellipsometry, H.Tompkins and E. Irene (Eds.) William Andrew Publ., 2005.

Vibrational sum frequency generation spectroscopy: Richmond, G.L., Chem. Rev. 102 (2002) 2693.

Infrared reflection absorption spectroscopy: Barner, B.J., Green, M.J., Saez, E.I., Corn, R.M., Anal. Chem. 63 (1991) 55.

Electron microscopy and microanalysis: Echlin, P., Fiori, C.E., Goldstein, J., Joy, D.C., Newbury, D.E. Advanced Scanning Electron Microscopy and X-Ray Microanalysis, Springer, 1986.

Atomic force microscopy: Applications of Scanned Probe Microscopy to Polymers, J.D. Batteas, C.A. Michaels, G.C. Walker, Eds., ACS, 2006 Microscopy and Spectroscopy: Theory, Techniques, and Applications, 2nd Edition D. Bornell (Ed.), Wiley, 2001.

Comprehensive overview of applications of neutron reflectivity: Lu, J.R., Thomas, R.K., Penfold, J. Adv. Colloid Interface Sci. 84 (2000) 143.

A student-oriented coverage of the theoretical foundations of ellipsometry and neutron reflectivity in relation to surfactant research: Zhmud, B., Tiberg, F., Adv. Colloid Interface Sci. 113 (2005) 21.