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Mass Transport Modes

1. Convective transport (due to directed bulk flow)
2. Diffusive transport (due to random molecular motion).
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Convective pick displacement: L = vt
Diffusive pick broadening: W = (Dt)2

Diffusion Mechanisms in Porous Solids

(1) surface diffusion (film flow)

(3) Knudsen diffusion
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(2) bulk diffusion (gas or liquid)
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The Diffusion Equation
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An Example of Diffusion Problems
Silicon Release from River Beds
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The Richards Equation

Degree of saturation, S,

volumeof volume of liquid in pores
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Relationship between B(S) and p

Higher vapor |:> More capillary |:> Lower pore
pressure condensate permeability
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Instant equilibration between vapor and condensate is implied!

Condensation of Liquid in Pores
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Diffusion in a Ternary Gas Mixture

H, (Duncan and Toor, 1962) (Duncan and Toor, 1962)
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The Maxwell-Stefan Formalism

The main lesson learnt from the Duncan & Toor experiment:
The transfer of nitrogen occurs even though there’s no concentation gradient.
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As H, diffuses faster than CO,, pressure builds up in bulb 1, forcing N, out:

d
dpy, MR dpy, _ day, _% =RTx
N = =M
X pNz dx *odx nH2 (UN2 _UHZ)
The flows of H, and CO, “"push" N, molecules, Dy

eg.
RT Neo, (Uy, —Uco.)
- CO,; CO,
Fbsz ) Ny, Ny, (qu _UNZ) p—ete 0o
N,..H, Dy, ..co,




The Maxwell-Stefan Formalism
Multicomponent Mixtures
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Generalization of the Fick Law
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The Dusty Gas Model

Interactions involved:
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The porous matrix is considered as a DK ~ (pg E
gigant immobile macromolecule (dust). ' 3\ 2M,

One More Generalization
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The Principle of Chromatography

Adsorption-desorption processes:
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t=t, "Blue” species have lower

. . adsorptivity, hence they stay more

time in solution, moving downstream
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c t=1,
A "Red” species have higher
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time fixed to the surface, lagging
behind the "blue” species in their
downstream motion.

Eddy Diffusion

oc(r,t
( )+v ve(r,t) = DV2c(r, t)+s(r t)
ot —
convection diffusion souvce
t=ty t=t,
| t=t; t=t;
t=t, t=t
c t=t; c t=t;
4,_¥ I G
x flow x flow




Surfactant - Induced Percolation
Rise Of Surfactant Solution in Hydrophobic Capillaries

The governing equations:
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T - viscosity

p - density

g - acceleration of gravity
f(t) - capillary force

Plus the boundary and initial conditions, e.g.
z(0)=0
c(0,t)=c,
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Surfactant - Induced Percolation
Diffusion-Limited Imbibition of Surfactant Solutions
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(F. Tiberg, B. Zhmud, K. Hallstensson, M. von Bahr,
Phys. Chem. Chem. Phys., 2 (2000) 5189)
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Fractal Approach to Percolation
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percolation clusters

Percolation Limit

» Connectivity increases with increasing the fraction of filled sites.

» There is a critical site density needed for an interconnected network
known as the spanning cluster to form (p, = 0.5928, D = 1.89)

» Permeability is related to connectivity and density of "pore space”.

Gradient Percolation

low occupancy zone (p < p,)
— the majority of pores are empty

advancing liquid front (p = p.)

high occupancy zone (p > p,)
the majority of pores are filled
by liquid

For N random jumps (length a) over the nodes of a square lattice,
(X*(N))=a’N =2Dt,
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Percolation with Displacement

Percolation resulting in displacement of white fluid by black fluid on a 100x200 cell lattice. (3. Fader, Fractals, Plenum, NY, 1988)

» The regular diffusion theory allows some water to penetrate to the right border
at an infinite speed.

» The percolation theory limits the penetration speed to the propagation of the
“critical probability” front. Each cell is either empty (0) or filled (1), it cannot be
filled by, say, 10 or 90%. There remain a number of "white islands".




Enhanced Oil Recovery
(Displacement of Oil by Gas)

» CO, is mixed with oil, and, once dissolved, causes the oil to swell.
Thereby, reservoir pressure is restored and oil is rendered less viscous.

» 5 to 20% more oil can be recovered.

» In the USA, during 1998 alone, a total of 43 million tons CO, were injected
at over 65 EOR sites.

Claus Process
For Sulfur Recovery after Catalytic Desulfurization Process
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Transport Processes Occurring
while Drying an Inkjet Ink Drop on Paper
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